380 research outputs found

    Measurement of the eta-Meson Mass using psi(2S) --> eta J/psi

    Full text link
    We measure the mass of the eta meson using psi(2S) --> eta J/psi events acquired with the CLEO-c detector operating at the CESR e+e- collider. Using the four decay modes eta --> gamma gamma, 3pi0, pi+pi-pi0, and pi+pi-gamma, we find M(eta)=547.785 +- 0.017 +- 0.057 MeV, in which the first uncertainty is statistical and the second systematic. This result has an uncertainty comparable to the two most precise previous measurements and is consistent with that of NA48, but is inconsistent at the level of 6.5sigma with the much smaller mass obtained by GEM.Comment: 10 pages postscript,also available through http://www.lns.cornell.edu/public/CLNS/2007/, Submitted to PR

    Update of the measurement of the cross section for e^+e^- -> psi(3770) -> hadrons

    Full text link
    We have updated our measurement of the cross section for e^+e^- -> psi(3770) -> hadrons, our publication "Measurement of sigma(e^+e^- -> psi(3770) -> hadrons) at E_{c.m.} = 3773 MeV", arXiv:hep-ex/0512038, Phys.Rev.Lett.96, 092002 (2006). Simultaneous with this arXiv update, we have published an erratum in Phys.Rev.Lett.104, 159901 (2010). There, and in this update, we have corrected a mistake in the computation of the error on the difference of the cross sections for e^+e^- -> psi(3770) -> hadrons and e^+e^- -> psi(3770) -> DDbar. We have also used a more recent CLEO measurement of cross section for e^+e^- -> psi(3770) -> DDbar. From this, we obtain an upper limit on the branching fraction for psi(3770) -> non-DDbar of 9% at 90% confidence level.Comment: 3 pages, 0 figures. This is an erratum to Phys.Rev.Lett.96:092002,2006. Added a reference

    Measurement of B(Ds+ -->ell+ nu) and the Decay Constant fDs From 600/pb of e+e- Annihilation Data Near 4170 MeV

    Full text link
    We examine e+e- --> Ds^-D_s^{*+} and Ds^{*-}Ds^{+} interactions at 4170 MeV using the CLEO-c detector in order to measure the decay constant fDs with good precision. Previously our measurements were substantially higher than the most precise lattice based QCD calculation of (241 +/- 3) MeV. Here we use the D_s^+ --> ell^+ nu channel, where the ell^+ designates either a mu^+ or a tau^+, when the tau^+ --> pi^+ anti-nu. Analyzing both modes independently, we determine B(D_s^+ --> mu^+ nu)= 0.565 +/- 0.045 +/- 0.017)%, and B(D_s^+ --> mu^+ nu)= (6.42 +/- 0.81 +/- 0.18)%. We also analyze them simultaneously to find an effective value of B^{eff}(D_s^+ --> mu^+ nu)= (0.591 +/- 0.037 +/- 0.018)% and fDs=(263.3 +/- 8.2 +/- 3.9) MeV. Combining with the CLEO-c value determined independently using D_s^+ --> tau^+ nu, tau^+ --> e^+ nu anti-nu decays, we extract fDs=(259.5 +/- 6.6 +/- 3.1) MeV. Combining with our previous determination of B(D^+ --> mu^+ nu), we extract the ratio fDs/fD+=1.26 +/- 0.06 +/- 0.02. No evidence is found for a CP asymmetry between Gamma(D_s^+ --> mu^+\nu) and \Gamma(D_s^- --> mu^- nu); specifically the fractional difference in rates is measured to be (4.8 +/- 6.1)%. Finally, we find B(D_s^+ --> e^+ nu) < 1.2x10^{-4} at 90% confidence level.Comment: 26 pages, 16 figure

    Determination of the D0 -> K+pi- Relative Strong Phase Using Quantum-Correlated Measurements in e+e- -> D0 D0bar at CLEO

    Full text link
    We exploit the quantum coherence between pair-produced D0 and D0bar in psi(3770) decays to study charm mixing, which is characterized by the parameters x and y, and to make a first determination of the relative strong phase \delta between doubly Cabibbo-suppressed D0 -> K+pi- and Cabibbo-favored D0bar -> K+pi-. We analyze a sample of 1.0 million D0D0bar pairs from 281 pb^-1 of e+e- collision data collected with the CLEO-c detector at E_cm = 3.77 GeV. By combining CLEO-c measurements with branching fraction input and time-integrated measurements of R_M = (x^2+y^2)/2 and R_{WS} = Gamma(D0 -> K+pi-)/Gamma(D0bar -> K+pi-) from other experiments, we find \cos\delta = 1.03 +0.31-0.17 +- 0.06, where the uncertainties are statistical and systematic, respectively. In addition, by further including external measurements of charm mixing parameters, we obtain an alternate measurement of \cos\delta = 1.10 +- 0.35 +- 0.07, as well as x\sin\delta = (4.4 +2.7-1.8 +- 2.9) x 10^-3 and \delta = 22 +11-12 +9-11 degrees.Comment: 37 pages, also available through http://www.lns.cornell.edu/public/CLNS/2007/. Incorporated referee's comment

    Measurement of Charm Production Cross Sections in e+e- Annihilation at Energies between 3.97 and 4.26 GeV

    Full text link
    Using the CLEO-c detector at the Cornell Electron Storage Ring, we have measured inclusive and exclusive cross sections for the production of D+, D0 and Ds+ mesons in e+e- annihilations at thirteen center-of-mass energies between 3.97 and 4.26 GeV. Exclusive cross sections are presented for final states consisting of two charm mesons (DD, D*D, D*D*, Ds+Ds-, Ds*+Ds-, and Ds*+Ds*-) and for processes in which the charm-meson pair is accompanied by a pion. No enhancement in any final state is observed at the energy of the Y(4260).Comment: 19 pages, postscript also available through http://www.lns.cornell.edu/public/CLNS/2007/, Submitted to PR

    Measurement of the Total Hadronic Cross Section in e+e- Annihilations below 10.56 GeV

    Full text link
    Using the CLEO III detector, we measure absolute cross sections for e+e- --> hadrons at seven center-of-mass energies between 6.964 and 10.538 GeV. The values of R, the ratio of hadronic and muon pair production cross sections, are determined within 2% total r.m.s. uncertainty.Comment: 17 pages postscript,also available through http://www.lns.cornell.edu/public/CLNS/2007/, Submitted to PR

    Confirmation of the Y(4260) Resonance Production in ISR

    Get PDF
    Using 13.3 fb^-1 of e+e- collision data taken in the Upsilon(1S-4S) region with the CLEO III detector at the CESR collider, a search has been made for the new resonance Y(4260) recently reported by the BaBar Collaboration. The production of Y(4260) in initial state radiation (ISR), and its decay into pi+pi-J/psi are confirmed. A good quality fit to our data is obtained with a single resonance. We determine M(Y(4260))=(4284+17-16(stat)+-4(syst)) MeV/c^2, Gamma(Y(4260))=(73+39-25(stat)+-5(syst)) MeV/c^2, and Gamma_ee(Y(4260))xBr(Y(4260)->pi+pi-J/psi)=(8.9+3.9-3.1(stat)+-1.9(syst)) eV/c^2.Comment: 8 pages postscript,also available through http://www.lns.cornell.edu/public/CLNS/2006/, Submitted to PRD (Rapid Comm.

    Observation of the Hadronic Transitions Chi_{b 1,2}(2P) -> omega Upsilon(1S)

    Full text link
    The CLEO Collaboration has observed the first hadronic transition among bottomonium (b bbar) states other than the dipion transitions among vector states, Upsilon(nS) -> pi pi Upsilon(mS). In our study of Upsilon(3S) decays, we find a significant signal for Upsilon(3S) -> gamma omega Upsilon(1S) that is consistent with radiative decays Upsilon(3S) -> gamma chi_{b 1,2}(2P), followed by chi_{b 1,2} -> omega Upsilon(1S). The branching ratios we obtain are Br(chi_{b1} -> omega Upsilon(1S) = 1.63 (+0.35 -0.31) (+0.16 -0.15) % and Br(chi_{b2} -> omega Upsilon(1S) = 1.10 (+0.32 -0.28) (+0.11 - 0.10)%, in which the first error is statistical and the second is systematic.Comment: submitted to XXI Intern'l Symp on Lepton and Photon Interact'ns at High Energies, August 2003, Fermila
    corecore